Properties-of-Asymptotic-Notations
General properties
if f(n) is O(g(n)),then a∗f(n) is O(g(n))
eg:f(n)=2n2+5,O(n)=n2 if 7∗(2n2+5)=14n2+35, then O(n) also O(n2)
if f(n) is Ω(g(n)),then a∗f(n) is Ω(g(n))
eg:f(n)=2n2+5,Ω(n)=n2 if 7∗(2n2+5)=14n2+35, then Ω(n) also Ω(n2)
Reflective properties
if f(n) is given,then f(n) is O(f(n))
eg:f(n)=n2,O(n)=n2=f(n)
Transitive properties
if f(n) is O(g(n)),and g(n) is O(h(n)),then f(n)=O(h(n))
eg:f(n)=n g(n)=n2 h(n)=n3 ∴n is O(n2),n2 is O(n3),then n is O(n3)
Symmetric properties
if f(n) is Θ(g(n)),then g(n)=Θ(f(n))
$eg: f(n) = n^2 \space g(n) = n^2 \space \because f(n)=\Theta(n^2) \therefore g(n)=\Theta(n^2) $
Transpose Symmetric properties
if f(n) is O(g(n)),then g(n)=Ω(f(n))
$eg: f(n) = n \space g(n) = n^2 \space \because n\space is\space O(n^2), then \space n^2 \space is \space \Omega(n) $
Properties && Asymptotic Notations
if f(n) = O(g(n)),and f(n)=Ω(g(n))
∴g(n)<= f(n)<=Ω(g(n)) ∴θf(n)=g(n)
Properties && Asymptotic Notations2
if f(n) = O(g(n)),and d(n)=O(e(n)) thenf(n)+d(n)=O(max(g(n),e(n)))
eg:f(n)=n2=O(n) d(n)=n=O(n2) ∴f(n)+d(n)=n2+n=O(n2)
Properties && Asymptotic Notations3
if f(n) = O(g(n)) and d(n)=O(e(n)) thenf(n)∗d(n)=O(g(n)∗e(n)))